Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

???searchArticles.header???



Filter by Date: Year(4-digits)   to 

???application.search.numResults???


Alphabetic Search:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

???manualAddArticle.find??? ???manualAddArticle.link.add???


???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???

( ???images.icon???)
Search Results

Xenopus meiotic microtubule-associated interactome., Gache V, Waridel P, Winter C, Juhem A, Schroeder M, Shevchenko A, Popov AV., PLoS One. February 2, 2010; 5 (2): e9248.          


Xenopus Meis3 protein lies at a nexus downstream to Zic1 and Pax3 proteins, regulating multiple cell-fates during early nervous system development., Gutkovich YE, Ofir R, Elkouby YM, Dibner C, Gefen A, Elias S, Frank D., Dev Biol. February 1, 2010; 338 (1): 50-62.                  


Xenopus Wnt11b is identified as a potential pronephric inducer., Tételin S, Jones EA., Dev Dyn. January 1, 2010; 239 (1): 148-59.


XRASGRP2 is essential for blood vessel formation during Xenopus development., Suzuki K, Takahashi S, Haramoto Y, Onuma Y, Nagamine K, Okabayashi K, Hashizume K, Iwanaka T, Asashima M., Int J Dev Biol. January 1, 2010; 54 (4): 609-15.            


Xenopus laevis oocytes expressing human P-glycoprotein: probing trans- and cis-inhibitory effects on [3H]vinblastine and [3H]digoxin efflux., Jutabha P, Wempe MF, Anzai N, Otomo J, Kadota T, Endou H., Pharmacol Res. January 1, 2010; 61 (1): 76-84.


Xwnt8 directly initiates expression of labial Hox genes., In der Rieden PM, Vilaspasa FL, Durston AJ., Dev Dyn. January 1, 2010; 239 (1): 126-39.          


Xenopus axin-related protein: a link between its centrosomal localization and function in the Wnt/beta-catenin pathway., Alexandrova EM, Sokol SY., Dev Dyn. January 1, 2010; 239 (1): 261-70.            


Xenopus development from late gastrulation to feeding tadpole in simulated microgravity., Olson WM, Wiens DJ, Gaul TL, Rodriguez M, Hauptmeier CL., Int J Dev Biol. January 1, 2010; 54 (1): 167-74.  


Xenbase: gene expression and improved integration., Bowes JB, Snyder KA, Segerdell E, Jarabek CJ, Azam K, Zorn AM, Vize PD., Nucleic Acids Res. January 1, 2010; 38 (Database issue): D607-12.      


XPteg (Xenopus proximal tubules-expressed gene) is essential for pronephric mesoderm specification and tubulogenesis., Lee SJ, Kim S, Choi SC, Han JK., Mech Dev. January 1, 2010; 127 (1-2): 49-61.                  


Xenopus laevis Oocytes., Bröer S., Methods Mol Biol. January 1, 2010; 637 295-310.


Xenopus tropicalis: an ideal experimental animal in amphibia., Kashiwagi K, Kashiwagi A, Kurabayashi A, Hanada H, Nakajima K, Okada M, Takase M, Yaoita Y., Exp Anim. January 1, 2010; 59 (4): 395-405.


Xenopus, a unique comparative model to explore the role of certain heat shock proteins and non-classical MHC class Ib gene products in immune surveillance., Robert J, Goyos A, Nedelkovska H., Immunol Res. December 1, 2009; 45 (2-3): 114-22.


Xenopus delta-catenin is essential in early embryogenesis and is functionally linked to cadherins and small GTPases., Gu D, Sater AK, Ji H, Cho K, Clark M, Stratton SA, Barton MC, Lu Q, McCrea PD., J Cell Sci. November 15, 2009; 122 (Pt 22): 4049-61.            


Xenopus Rnd1 and Rnd3 GTP-binding proteins are expressed under the control of segmentation clock and required for somite formation., Goda T, Takagi C, Ueno N., Dev Dyn. November 1, 2009; 238 (11): 2867-76.            


Xenopus insm1 is essential for gastrointestinal and pancreatic endocrine cell development., Horb LD, Jarkji ZH, Horb ME., Dev Dyn. October 1, 2009; 238 (10): 2505-10.                


Xenopus explants as an experimental model system for studying heart development., Afouda BA, Hoppler S., Trends Cardiovasc Med. October 1, 2009; 19 (7): 220-6.


Xhairy2 functions in Xenopus lens development by regulating p27(xic1) expression., Murato Y, Hashimoto C., Dev Dyn. September 1, 2009; 238 (9): 2179-92.              


Xmc mediates Xctr1-independent morphogenesis in Xenopus laevis., Haremaki T, Weinstein DC., Dev Dyn. September 1, 2009; 238 (9): 2382-7.            


Xenopus oocytes reactivate muscle gene transcription in transplanted somatic nuclei independently of myogenic factors., Biddle A, Simeoni I, Gurdon JB., Development. August 1, 2009; 136 (16): 2695-703.


Xtr, a plural tudor domain-containing protein, coexists with FRGY2 both in cytoplasmic mRNP particle and germ plasm in Xenopus embryo: its possible role in translational regulation of maternal mRNAs., Golam Mostafa M, Sugimoto T, Hiyoshi M, Kawasaki H, Kubo H, Matsumoto K, Abe S, Takamune K., Dev Growth Differ. August 1, 2009; 51 (6): 595-605.          


Xenopus SMOC-1 Inhibits bone morphogenetic protein signaling downstream of receptor binding and is essential for postgastrulation development in Xenopus., Thomas JT, Canelos P, Luyten FP, Moos M., J Biol Chem. July 10, 2009; 284 (28): 18994-9005.                    


Xenopus laevis oocytes endogenously express all subunits of the ionotropic glutamate receptor family., Schmidt C, Klein C, Hollmann M., J Mol Biol. July 10, 2009; 390 (2): 182-95.


Xenopus, an ideal model system to study vertebrate left-right asymmetry., Blum M, Beyer T, Weber T, Vick P, Andre P, Bitzer E, Schweickert A., Dev Dyn. June 1, 2009; 238 (6): 1215-25.


Xenopus pancreas development., Pearl EJ, Bilogan CK, Mukhi S, Brown DD, Horb ME., Dev Dyn. June 1, 2009; 238 (6): 1271-86.          


XRCC1 interacts with the p58 subunit of DNA Pol alpha-primase and may coordinate DNA repair and replication during S phase., Lévy N, Oehlmann M, Delalande F, Nasheuer HP, Van Dorsselaer A, Schreiber V, de Murcia G, Ménissier-de Murcia J, Maiorano D, Bresson A., Nucleic Acids Res. June 1, 2009; 37 (10): 3177-88.            


XMAP215-EB1 interaction is required for proper spindle assembly and chromosome segregation in Xenopus egg extract., Kronja I, Kruljac-Letunic A, Caudron-Herger M, Bieling P, Karsenti E., Mol Biol Cell. June 1, 2009; 20 (11): 2684-96.


XsFRP5 modulates endodermal organogenesis in Xenopus laevis., Damianitsch K, Melchert J, Pieler T., Dev Biol. May 15, 2009; 329 (2): 327-37.      


Xenopus Wntless and the retromer complex cooperate to regulate XWnt4 secretion., Kim H, Cheong SM, Ryu J, Jung HJ, Jho EH, Han JK., Mol Cell Biol. April 1, 2009; 29 (8): 2118-28.  


Xenopus NM23-X4 regulates retinal gliogenesis through interaction with p27Xic1., Mochizuki T, Bilitou A, Waters CT, Hussain K, Zollo M, Ohnuma S., Neural Dev. January 5, 2009; 4 1.                      


Xenopus ADAM19 is involved in neural, neural crest and muscle development., Neuner R, Cousin H, McCusker C, Coyne M, Alfandari D., Mech Dev. January 1, 2009; 126 (3-4): 240-55.                      


xArx2: an aristaless homolog that regulates brain regionalization during development in Xenopus laevis., Wolanski M, Khosrowshahian F, Kelly LE, El-Hodiri HM, Crawford MJ., Genesis. January 1, 2009; 47 (1): 19-31.              


Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives., Rogers CD, Harafuji N, Archer T, Cunningham DD, Casey ES., Mech Dev. January 1, 2009; 126 (1-2): 42-55.        


Xenopus Wnt-5a induces an ectopic larval tail at injured site, suggesting a crucial role for noncanonical Wnt signal in tail regeneration., Sugiura T, Tazaki A, Ueno N, Watanabe K, Mochii M., Mech Dev. January 1, 2009; 126 (1-2): 56-67.    


Xenopus tropicalis as a test system for developmental and reproductive toxicity., Berg C, Gyllenhammar I, Kvarnryd M., J Toxicol Environ Health A. January 1, 2009; 72 (3-4): 219-25.


Xenopus W-linked DM-W induces Foxl2 and Cyp19 expression during ovary formation., Okada E, Yoshimoto S, Ikeda N, Kanda H, Tamura K, Shiba T, Takamatsu N, Ito M., Sex Dev. January 1, 2009; 3 (1): 38-42.


Xenopus oocyte electrophysiology in GPCR drug discovery., Hansen KB, Bräuner-Osborne H., Methods Mol Biol. January 1, 2009; 552 343-57.


Xenopus BTBD6 and its Drosophila homologue lute are required for neuronal development., Bury FJ, Moers V, Yan J, Souopgui J, Quan XJ, De Geest N, Kricha S, Hassan BA, Bellefroid EJ., Dev Dyn. November 1, 2008; 237 (11): 3352-60.              


Xenopus laevis as a model for studying thyroid hormone signalling: from development to metamorphosis., Morvan-Dubois G, Demeneix BA, Sachs LM., Mol Cell Endocrinol. October 10, 2008; 293 (1-2): 71-9.


XRASGRP2 expression during early development of Xenopus embryos., Nagamine K, Matsuda A, Asashima M, Hori T., Biochem Biophys Res Commun. August 8, 2008; 372 (4): 886-91.        


Xenopus TACC3/maskin is not required for microtubule stability but is required for anchoring microtubules at the centrosome., Albee AJ, Wiese C., Mol Biol Cell. August 1, 2008; 19 (8): 3347-56.


Xenopus zinc finger transcription factor IA1 (Insm1) expression marks anteroventral noradrenergic neuron progenitors in Xenopus embryos., Parlier D, Ariza A, Christulia F, Genco F, Vanhomwegen J, Kricha S, Souopgui J, Bellefroid EJ., Dev Dyn. August 1, 2008; 237 (8): 2147-57.          


XHAPLN3 plays a key role in cardiogenesis by maintaining the hyaluronan matrix around heart anlage., Ito Y, Seno S, Nakamura H, Fukui A, Asashima M., Dev Biol. July 1, 2008; 319 (1): 34-45.                          


Xenopus tropicalis allurin: expression, purification, and characterization of a sperm chemoattractant that exhibits cross-species activity., Burnett LA, Boyles S, Spencer C, Bieber AL, Chandler DE., Dev Biol. April 15, 2008; 316 (2): 408-16.


Xenopus V1R vomeronasal receptor family is expressed in the main olfactory system., Date-Ito A, Ohara H, Ichikawa M, Mori Y, Hagino-Yamagishi K., Chem Senses. April 1, 2008; 33 (4): 339-46.


xDnmt1 regulates transcriptional silencing in pre-MBT Xenopus embryos independently of its catalytic function., Dunican DS, Ruzov A, Hackett JA, Meehan RR., Development. April 1, 2008; 135 (7): 1295-302.


Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light., Zhang R, Oglesby E, Marsh-Armstrong N., Exp Eye Res. April 1, 2008; 86 (4): 612-21.          


Xenopus Paraxial Protocadherin regulates morphogenesis by antagonizing Sprouty., Wang Y, Janicki P, Köster I, Berger CD, Wenzl C, Grosshans J, Steinbeisser H., Genes Dev. April 1, 2008; 22 (7): 878-83.


Xenopus importin beta validates human importin beta as a cell cycle negative regulator., Delmar VA, Chan RC, Forbes DJ., BMC Cell Biol. March 22, 2008; 9 14.        


xRic-8 is a GEF for Gsalpha and participates in maintaining meiotic arrest in Xenopus laevis oocytes., Romo X, Pastén P, Martínez S, Soto X, Lara P, de Arellano AR, Torrejón M, Montecino M, Hinrichs MV, Olate J., J Cell Physiol. March 1, 2008; 214 (3): 673-80.

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ???pagination.result.next???